- 65. We denote \vec{v}_{PG} as the velocity of the plane relative to the ground, \vec{v}_{AG} as the velocity of the air relative to the ground, and \vec{v}_{PA} be the velocity of the plane relative to the air.
 - (a) The vector diagram is shown below. $\vec{v}_{PG} = \vec{v}_{PA} + \vec{v}_{AG}$. Since the magnitudes v_{PG} and v_{PA} are equal the triangle is isosceles, with two sides of equal length. Consider either of the right triangles

formed when the bisector of θ is drawn (the dashed line). It bisects $\vec{v}_{\rm AG}$, so

$$\sin(\theta/2) = \frac{v_{\text{AG}}}{2v_{\text{PG}}}$$
$$= \frac{70.0 \,\text{mi/h}}{2(135 \,\text{mi/h})}$$

which leads to $\theta=30.1^\circ$. Now $\vec{v}_{\rm AG}$ makes the same angle with the E-W line as the dashed line does with the N-S line. The wind is blowing in the direction 15° north of west. Thus, it is blowing from 75° east of south.

(b) The plane is headed along \vec{v}_{PA} , in the direction 30° east of north. There is another solution, with the plane headed 30° west of north and the wind blowing 15° north of east (that is, from 75° west of south).